If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-90x+225=0
a = 6; b = -90; c = +225;
Δ = b2-4ac
Δ = -902-4·6·225
Δ = 2700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2700}=\sqrt{900*3}=\sqrt{900}*\sqrt{3}=30\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-30\sqrt{3}}{2*6}=\frac{90-30\sqrt{3}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+30\sqrt{3}}{2*6}=\frac{90+30\sqrt{3}}{12} $
| -1=6(b-11)+3b | | -7(1-5s)=18 | | 8x-41=8x | | 2v+11=15 | | 9u+1=10 | | 3a+16=19 | | u17+9=10 | | 7÷2x-1=1÷4x+3 | | 10(w+2)=20 | | x+2x+.5x=100+1570 | | 2(b+1)=18 | | 7(x+3)=15x-3 | | 3-2x=-7-14x | | 17x+3=15x-3 | | 25000+0.05(x)=x | | 3(t+6)=18 | | 2+1+1x7=10 | | 2(r+3)=8 | | 6q+4=10 | | 6x-3+4x=7x | | 1+5(x-1)=3+2(x-3) | | z^2-18z=63 | | 7x^2+17=0 | | y7+7=11 | | 3y2=21y | | -8x-5=-9x-7 | | 5-x=3-2x | | 24×(3x)=0 | | x7+4=5 | | .25x=105 | | 2^2x-1=60 | | x-2+4=9 |